martes, 4 de noviembre de 2008

Trabajo Practico de Bonato, Brieva, Morales

Project Work
English

SUBJECT: The ozone hole in the South Pole

TEACHER: Stella Maris Goldenzweig

SUBMITTED DATE: 25-07-2008

COURSE: 5º 2º

MEMBERS: Bonato, María Agustina
Brieva, Melisa
Morales, Paula

Ozone depletion

Ozone depletion describes two distinct, but related observations: a slow, steady decline of about 4 percent per decade in the total amount of ozone in Earth's stratosphere since the late 1970s; and a much larger, but seasonal, decrease in stratospheric ozone over Earth's polar regions during the same period. The latter phenomenon is commonly referred to as the ozone hole. In addition to this well-known stratospheric ozone depletion, there are also tropospheric ozone depletion events, which occur near the surface in Polar Regions during spring.
The detailed mechanism by which the polar ozone holes are formed is different from that for the mid-latitude thinning, but the most important process in both trends is catalytic destruction of ozone by atomic chlorine and bromine.[1] The main source of these halogen atoms in the stratosphere is photodissociation of chlorofluorocarbon (CFC) compounds, commonly called freons, and of bromofluorocarbon compounds known as halons. These compounds are transported into the stratosphere after being emitted on the surface.
It is suspected that a variety of biological consequences such as increases in skin cancer, damage to plants, and reduction of plankton populations in the ocean's photic zone may result from the increased UV exposure due to ozone depletion.



The Montreal Protocol on Substances That Deplete the Ozone Layer

This protocol is an international treaty designed to protect the ozone layer by phasing out the production of a number of substances believed to be responsible for ozone depletion. The treaty was opened for signature on September 16, 1987 and entered into force on January 1, 1989 followed by a first meeting in Helsinki, May 1989. Since then, it has undergone seven revisions, in 1990 (London), 1991 (Nairobi), 1992 (Copenhagen), 1993 (Bangkok), 1995 (Vienna), 1997 (Montreal), and 1999 (Beijing). Due to its widespread adoption and implementation it has been hailed as an example of exceptional international co-operation with Kofi Annan quoted as saying it is “Perhaps the single most successful international agreement to date…”



Observations on ozone layer depletion

The most pronounced decrease in ozone has been in the lower stratosphere. However, the ozone hole is most usually measured not in terms of ozone concentrations at these levels (which are typically of a few parts per million) but by reduction in the total column ozone, above a point on the Earth's surface, which is normally expressed in Dobson units, abbreviated as "DU". Marked decreases in column ozone in the Antarctic spring and early summer compared to the early 1970s and before have been observed using instruments such as the Total Ozone Mapping Spectrometer (TOMS).
Reductions of up to 70% in the ozone column observed in the austral (southern hemispheric) spring over Antarctica and first reported in 1985 (Farman et al 1985) are continuing. Through the 1990s, total column ozone in September and October have continued to be 40–50% lower than pre-ozone-hole values. In the Arctic the amount lost is more variable year-to-year than in the Antarctic. The greatest declines, up to 30%, are in the winter and spring, when the stratosphere is colder.
Reactions that take place on polar stratospheric clouds (PSCs) play an important role in enhancing ozone depletion. PSCs form more readily in the extreme cold of Antarctic stratosphere. This is why ozone holes first formed are deeper, over Antarctica. Early models failed to take PSCs into account and predicted a gradual global depletion, which is why the sudden Antarctic ozone hole was such a surprise to many scientists.
In middle latitudes it is preferable to speak of ozone depletion rather than holes.
Ozone depletion also explains much of the observed reduction in stratospheric and upper tropospheric temperatures. The source of the warmth of the stratosphere is the absorption of UV radiation by ozone, hence reduced ozone leads to cooling. Some stratospheric cooling is also predicted from increases in greenhouse gases such as CO2; however the ozone-induced cooling appears to be dominant.



The ozone hole and its causes

The Antarctic ozone hole is an area of the Antarctic stratosphere in which the recent ozone levels have dropped to as low as 33% of their pre-1975 values. The ozone hole occurs during the Antarctic spring, from September to early December, as strong westerly winds start to circulate around the continent and create an atmospheric container. Within this polar vortex, over 50% of the lower stratospheric ozone is destroyed during the Antarctic spring.
The polar stratospheric clouds form during winter, in the extreme cold. Polar winters are dark, consisting of 3 months without solar radiation (sunlight). Not only lack of sunlight contributes to a decrease in temperature but also the polar vortex traps and chill air. Temperatures hover around or below -80 °C. These low temperatures form cloud particles and are composed of either nitric acid (Type I PSC) or ice (Type II PSC). Both types provide surfaces for chemical reactions that lead to ozone destruction.
The photochemical processes involved are complex but well understood. The key observation is that, ordinarily, most of the chlorine in the stratosphere resides in stable "reservoir" compounds, primarily hydrogen chloride (HCl) and chlorine nitrate (ClONO2). During the Antarctic winter and spring, however, reactions on the surface of the polar stratospheric cloud particles convert these "reservoir" compounds into reactive free radicals (Cl and ClO). The clouds can also remove NO2 from the atmosphere by converting it to nitric acid, which prevents the newly formed ClO from being converted back into ClONO2.
The role of sunlight in ozone depletion is the reason why the Antarctic ozone depletion is so important during spring. During winter, even though PSCs are at their most abundant, there is no light over the pole to drive the chemical reactions. During the spring, however, the sun comes out, providing energy to drive photochemical reactions, and melt the polar stratospheric clouds, releasing the trapped compounds.
Most of the ozone that is destroyed is in the lower stratosphere, in contrast to the much smaller ozone depletion through homogeneous gas phase reactions, which occurs primarily in the upper stratosphere.
Warming temperatures near the end of spring break up the vortex around mid-December. As warm, ozone-rich air flows in from lower latitudes, the PSCs are destroyed, the ozone depletion process shuts down, and the ozone hole heals.


An ozone hole was first observed in 1956

G.M.B. Dobson (Exploring the Atmosphere, 2nd Edition, Oxford, 1968) mentioned that when springtime ozone levels over Halley Bay were first measured, he was surprised to find that they were ~320 DU, about 150 DU below spring levels, ~450 DU, in the Arctic. These, however, were the pre-ozone hole normal climatological values. What Dobson describes is essentially the baseline from which the ozone hole is measured: actual ozone hole values are in the 150–100 DU range.
The discrepancy between the Arctic and Antarctic noted by Dobson was primarily a matter of timing: during the Arctic spring ozone levels rose smoothly, peaking in April, whereas in the Antarctic they stayed approximately constant during early spring, rising abruptly in November when the polar vortex broke down.
The behavior seen in the Antarctic ozone hole is completely different. Instead of staying constant, early springtime ozone levels suddenly drop from their already low winter values, by as much as 50%, and normal values are not reached again until December.



The most important consequence of ozone layer depletion

Since the ozone layer absorbs UVB ultraviolet light from the Sun, ozone layer depletion is expected to increase surface UVB levels, which could lead to damage, including increases in skin cancer. This was the reason for the Montreal Protocol. Although decreases in stratospheric ozone are well-tied to CFCs and there are good theoretical reasons to believe that decreases in ozone will lead to increases in surface UVB, there is no direct observational evidence linking ozone depletion to higher incidence of skin cancer in human beings. This is partly due to the fact that UVA, which has also been implicated in some forms of skin cancer, is not absorbed by ozone, and it is nearly impossible to control statistics for lifestyle changes in the populace.
Ozone, while a minority constituent in the earth's atmosphere, is responsible for most of the absorption of UVB radiation. The amount of UVB radiation that penetrates through the ozone layer decreases exponentially with the slant-path thickness/density of the layer. Correspondingly, a decrease in atmospheric ozone is expected to give rise to significantly increased levels of UVB near the surface.
Increases in surface UVB due to the ozone hole can be partially inferred by radioactive transfer model calculations, but cannot be calculated from direct measurements because of the lack of reliable historical (pre-ozone-hole) surface UV data, although more recent surface UV observation measurement programmes exist (e.g. at Lauder, New Zealand).
Because it is this same UV radiation that creates ozone in the ozone layer from O2 (regular oxygen) in the first place, a reduction in stratospheric ozone would actually tend to increase photochemical production of ozone at lower levels (in the troposphere), although the overall observed trends in total column ozone still show a decrease, largely because ozone produced lower down has a naturally shorter photochemical lifetime. This is destroyed before the concentrations could reach a level which would compensate for the ozone reduction higher up.


Source:
* http://en.wikipedia.org/wiki/Ozone_depletion
* http://www.theozonehole.com/
* http://ozonewatch.gsfc.nasa.gov/

No hay comentarios: